
Gillian Crampton Smith + Philip Tabor Telecomunicazioni

IxD Theory 2: Telecomunicazioni

IUAV University of Venice

Visual and Multimedia Design graduate programme

Programming the computer 2

© Gillian Crampton Smith + Philip Tabor 2009

1Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

What does RobotProg teach us?

The basic elements of his program are:

 do something commands

 conditional program flow

 loops

2Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

What does RobotProg teach us?

Programming needs not only knowledge of the
language, but also problem-solving strategy

We must make an abstraction of the real-world
problem in order to manipulate it with the computer

A programmng language has a limited number of
commands that the computer can understand: we
have to solve the problem using only these.

3Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

Gillian Crampton Smith + Philip Tabor

4Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

Levels of programming languages

Visual programming languages – like Visual Basic
or MaxSP

Meta-languages – that write code for you, like
Dreamweaver, the web design program

High level languages – like C or Java or Processing

Assembly language – using mnemonics which are
then translated into machine language

Machine language (using bit patterns) 0s and 1s

5Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

Meta languages

6Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

Meta languages

For example: Dreamweaver

- translated first into high-level language (e.g. Html)
then into machine code by the computer

- even easier to understand BUT are less flexible.

7Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

High-level languages

8Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

High-level languages

For example: C++, Java,
Processing, HTML and CSS

- are translated into
machine code by the
computer

- are easier to understand
and avoid errors

We still need to know the
right commands of our
language, but we don’t
need to worry about which
memory locations we are
using

void setup()
{
size(200, 200);
background(0);
stroke(153);
loop();
}

int x = 0;
int y = 100;
int incx = 1;
int incy = 10;

void draw()
{
line(x, y, x+incx,y+incy);
x = x + incx;
y = y + incy;
if (x + y == 199) noLoop();
}

9Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

MACHINE LANGUAGE AND ASSEMBLER

10Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

How the computer manipulates 0s and 1s

Microprocessor:

ALU: (arithmetic logic unit) which does
mathematical operations

Registers: temporary storage locations for
operations in progress

Memory (RAM)

Longer-term storage locations

Video memory

Screen buffers special memory mapped to the
screen

11Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

Machine language

Modern computers use 32-bit numbers to store
machine language

000 0001 0010 1011 1000 0000 0010 0000

Means: Add register 1 to register 2, and put the
result in register 0.

AAARGH!!!!

Don’t panic!

12Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

Machine language

At the machine level, the program is written in
patterns of 0s and 1s, each of which is a code for
things like:

an instruction (e.g. ADD)

a piece of data (e.g. 39)

an address in memory to get some data

an address in memory to put some data

Every microprocessor has a different instruction set

13Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

Assembly language

The first computers were programmed in machine
language.

It was very slow and easy to make errors.

The Altair, an early desktop computer, had two rows
of toggle switches: one for the data, and one for the
address to put the data.

14Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

Assembly language

So assembly languages were invented which used
‘mnemonics’ (easy-to-remember codes). The
computer then translated these codes into the 1s and
0s of the machine

A line of assembly language has 4 elements:

Labels ‘Opcodes’ Operand(s) Comments

SUM: ADD $t0, $t1, $t2 ;add 2 numbers
 ;put the result in
 ;register 2

15Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

Assembly language

It’s difficult, but very fast.

Programs take very little
memory so it’s good for
embedded microprocessors
—in white goods, for
instance: washing
machines, cookers, vacuum
cleaners, etc.

http://www.8052.com

16Friday, 13 February 2009

http://www.8052.com/
http://www.8052.com/

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

The Terese
micro-computer

Main Memory Microprocessor

0 1 2 3

0 R1 ALU1
1 R2 ALU2
2 R3 ALU3
3 R4

Video Memory
0 1 2 3 4 5 6 7 8 9

100 100 101 102 103 104 105 106 107 108 109

110 110 111 112

120 122

130 133

140 144

150 155

160 166

170 177

180 188

190 199

Our imaginary
low-level computer
has only 16 bytes of
main memory and
100 bytes of video
memory.

Its microprocessor
has 4 registers and
one arithmetic logic
unit.

How would it work?

17Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

Assembly language

Remember that Asssembly language commands are
like this:

Labels ‘Opcodes’ Operand(s)

SUM: ADD $t0, $t1, $t2

So let’s look at the command set for our imaginary
computer. . . .

18Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

Terese micro-computer assember commands

Terese mini-computer assembler commands

OPCODE OPERATION ON
operand 1 operand 2 operand 3

LR1 Load Register R1 address or
#number

- -

LR2 Load Register R2 address or
#number

- -

C&M Copy and move value in 2nd
address to 1st address

A address 1 address 2

B address 1 #number

ADD Add 2 values 1st register 2nd register address to
store the
result

JMP jump to a 'label' label - -

JEQ Checks if two values are equal
AND jumps to a label

address 1 address 2 address or
'label' to
jump to

INC Increases a number in address
1 by the number in address 2

A address 1 address 2

B address 1 #number
END Stops the program

19Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

A Terese program

Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0
2 Y: C&M 0 1 #100
3 PLUS X: C&M 0 2 #1
4 PLUS Y: C&M 0 3 #10
5 DRAW: LR1 0 0
6 LR2 0 1
7 ADD R1 R2 R3
8 C&M R3 #1
9 INC X 0 2
10 INC y 0 3
11 JEQ #R3 199 END
12 JMP DRAW
13 END: END

20Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

Assembly language

Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

21Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

The Terese
micro-computer

Main Memory Microprocessor

0 1 2 3

0 R1 ALU1
1 R2 ALU2
2 R3 ALU3
3 R4

Video Memory
0 1 2 3 4 5 6 7 8 9

100 100 101 102 103 104 105 106 107 108 109

110 110 111 112

120 122

130 133

140 144

150 155

160 166

170 177

180 188

190 199

0

Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

In memory location 0,0 put the number 0

X

22Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

The Terese
micro-computer

Main Memory Microprocessor

0 1 2 3

0 R1 ALU1
1 R2 ALU2
2 R3 ALU3
3 R4

Video Memory
0 1 2 3 4 5 6 7 8 9

100 100 101 102 103 104 105 106 107 108 109

110 110 111 112

120 122

130 133

140 144

150 155

160 166

170 177

180 188

190 199

0 100

Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

100

X Y

;in memory location 0,0 put 0

23Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

The Terese
micro-computer

Main Memory Microprocessor

0 1 2 3

0 R1 ALU1
1 R2 ALU2
2 R3 ALU3
3 R4

Video Memory
0 1 2 3 4 5 6 7 8 9

100 100 101 102 103 104 105 106 107 108 109

110 110 111 112

120 122

130 133

140 144

150 155

160 166

170 177

180 188

190 199

0 1 10100

Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

100
;in memory location 0,0 put 0
;in memory location 0,1 put 0100100

X Y X+ Y+

24Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

The Terese
micro-computer

Main Memory Microprocessor

0 1 2 3

0 R1 ALU1
1 R2 ALU2
2 R3 ALU3
3 R4

Video Memory
0 1 2 3 4 5 6 7 8 9

100 100 101 102 103 104 105 106 107 108 109

110 110 111 112

120 122

130 133

140 144

150 155

160 166

170 177

180 188

190 199

00 1 10100

Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

100
;in memory location 0,0 put 0
;in memory location 0,1 put 0
;in memory location 0,2 put 1
;in memory location 0,3 put 10

100100

;in memory location 0,3 put 10

X Y X+ Y+

25Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

The Terese
micro-computer

Main Memory Microprocessor

0 1 2 3

0 R1 ALU1
1 R2 ALU2
2 R3 ALU3
3 R4

Video Memory
0 1 2 3 4 5 6 7 8 9

100 100 101 102 103 104 105 106 107 108 109

110 110 111 112

120 122

130 133

140 144

150 155

160 166

170 177

180 188

190 199

0 1 10 0

100

100

Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

100
;in memory location 0,0 put 0
;in memory location 0,1 put 0
;in memory location 0,2 put 1
;in memory location 0,3 put 10

100100

;in memory location 0,3 put 10

X Y X+ Y+

26Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

The Terese
micro-computer

Main Memory Microprocessor

0 1 2 3

0 R1 ALU1
1 R2 ALU2
2 R3 ALU3
3 R4

Video Memory
0 1 2 3 4 5 6 7 8 9

100 100 101 102 103 104 105 106 107 108 109

110 110 111 112

120 122

130 133

140 144

150 155

160 166

170 177

180 188

190 199

0 1 10 0

100

100

Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

100
;in memory location 0,0 put 0
;in memory location 0,1 put 0
;in memory location 0,2 put 1
;in memory location 0,3 put 10

100100

;in memory location 0,3 put 10

X Y X+ Y+
0+
100

27Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

The Terese
micro-computer

Main Memory Microprocessor

0 1 2 3

0 R1 ALU1
1 R2 ALU2
2 R3 ALU3
3 R4

Video Memory
0 1 2 3 4 5 6 7 8 9

100 100 101 102 103 104 105 106 107 108 109

110 110 111 112

120 122

130 133

140 144

150 155

160 166

170 177

180 188

190 199

0 1 10 0

100

100
0+
100

Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

100

100

;in memory location 0,0 put 0
;in memory location 0,1 put 0
;in memory location 0,2 put 1
;in memory location 0,3 put 10
; load R1 with contents of
memory 00
; load R2 with contents of
memory 01

100100

X Y X+ Y+

28Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

100

The Terese
micro-computer

Main Memory Microprocessor

0 1 2 3

0 R1 ALU1
1 R2 ALU2
2 R3 ALU3
3 R4

Video Memory
0 1 2 3 4 5 6 7 8 9

100 100 101 102 103 104 105 106 107 108 109

110 110 111 112

120 122

130 133

140 144

150 155

160 166

170 177

180 188

190 199

0 1 10 0

100

100Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

100
;in memory location 0,0 put 0
;in memory location 0,1 put 0
;in memory location 0,2 put 1
;in memory location 0,3 put 10
; load R1 with contents of
memory 00
; load R2 with contents of
memory 01
;add and put result in R3

100100

X Y X+ Y+

29Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

The Terese
micro-computer

Main Memory Microprocessor

0 1 2 3

0 R1 ALU1
1 R2 ALU2
2 R3 ALU3
3 R4

Video Memory
0 1 2 3 4 5 6 7 8 9

100 100 101 102 103 104 105 106 107 108 109

110 110 111 112

120 122

130 133

140 144

150 155

160 166

170 177

180 188

190 199

0 1 10 0

100

100

100

Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

100
;in memory location 0,0 put 0
;in memory location 0,1 put 0
;in memory location 0,2 put 1
;in memory location 0,3 put 10
; load R1 with contents of
memory 00
; load R2 with contents of
memory 01
;add and put result in R3
; put 1 (to light a pixel) in the
address in R3

100100

X Y X+ Y+

30Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

The Terese
micro-computer

Main Memory Microprocessor

0 1 2 3

0 R1 ALU1
1 R2 ALU2
2 R3 ALU3
3 R4

Video Memory
0 1 2 3 4 5 6 7 8 9

100 100 101 102 103 104 105 106 107 108 109

110 110 111 112

120 122

130 133

140 144

150 155

160 166

170 177

180 188

190 199

1 1 10 0

100

100

100

Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

100
;in memory location 0,0 put 0
;in memory location 0,1 put 0
;in memory location 0,2 put 1
;in memory location 0,3 put 10
; load R1 with contents of
memory 00
; load R2 with contents of
memory 01
;add and put result in R3
; put 1 (to light a pixel) in the
address in R3

100100

X Y X+ Y+

31Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

The Terese
micro-computer

Main Memory Microprocessor

0 1 2 3

0 R1 ALU1
1 R2 ALU2
2 R3 ALU3
3 R4

Video Memory
0 1 2 3 4 5 6 7 8 9

100 100 101 102 103 104 105 106 107 108 109

110 110 111 112

120 122

130 133

140 144

150 155

160 166

170 177

180 188

190 199

0 1 10 0

100

100

100

Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

100

X Y X+ Y+

;in memory location 0,0 put 0
;in memory location 0,1 put 0
;in memory location 0,2 put 1
;in memory location 0,3 put 10
; load R1 with contents of
memory 00
; load R2 with contents of
memory 01
;add and put result in R3
; put 1 (to light a pixel) in the
address in R3
; increment x with contents of
memory 02

100100

32Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

The Terese
micro-computer

Main Memory Microprocessor

0 1 2 3

0 R1 ALU1
1 R2 ALU2
2 R3 ALU3
3 R4

Video Memory
0 1 2 3 4 5 6 7 8 9

100 100 101 102 103 104 105 106 107 108 109

110 110 111 112

120 122

130 133

140 144

150 155

160 166

170 177

180 188

190 199

0 1 10 0

100

100

110

Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

100

X Y X+ Y+

;in memory location 0,0 put 0
;in memory location 0,1 put 0
;in memory location 0,2 put 1
;in memory location 0,3 put 10
; load R1 with contents of
memory 00
; load R2 with contents of
memory 01
;add and put result in R3
; put 1 (to light a pixel) in the
address in R3
; increment x with contents of
memory 02

100100

33Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

The Terese
micro-computer

Main Memory Microprocessor

0 1 2 3

0 R1 ALU1
1 R2 ALU2
2 R3 ALU3
3 R4

Video Memory
0 1 2 3 4 5 6 7 8 9

100 100 101 102 103 104 105 106 107 108 109

110 110 111 112

120 122

130 133

140 144

150 155

160 166

170 177

180 188

190 199

1 1 10 0

100

110

100

Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

100

X Y X+ Y+

34Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

The Terese
micro-computer

Main Memory Microprocessor

0 1 2 3

0 R1 ALU1
1 R2 ALU2
2 R3 ALU3
3 R4

Video Memory
0 1 2 3 4 5 6 7 8 9

100 100 101 102 103 104 105 106 107 108 109

110 110 111 112

120 122

130 133

140 144

150 155

160 166

170 177

180 188

190 199

1 1 10 1

111

110

110

Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

100

X Y X+ Y+

DRAW

35Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

The Terese
micro-computer

Main Memory Microprocessor

0 1 2 3

0 R1 ALU1
1 R2 ALU2
2 R3 ALU3
3 R4

Video Memory
0 1 2 3 4 5 6 7 8 9

100 100 101 102 103 104 105 106 107 108 109

110 110 111 112

120 122

130 133

140 144

150 155

160 166

170 177

180 188

190 199

2 1 10 1

111

110

120

Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

100

X Y X+ Y+

DRAW

36Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

The Terese
micro-computer

Main Memory Microprocessor

0 1 2 3

0 R1 ALU1
1 R2 ALU2
2 R3 ALU3
3 R4

Video Memory
0 1 2 3 4 5 6 7 8 9

100 100 101 102 103 104 105 106 107 108 109

110 110 111 112

120 122

130 133

140 144

150 155

160 166

170 177

180 188

190 199

2 1 10 2

122

120

120

Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

100

X Y X+ Y+

37Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

Assembly language
Terese mini-computer: example of assembler program

Label opcode operand 1 operand 2 operand 3

1 X: C&M 0 0 #0 ;in memory location 0,0 put 0

2 Y: C&M 0 1 #100 ;in memory location 0,1 put 0

3 PLUS X: C&M 0 2 #1 ;in memory location 0,2 put 1

4 PLUS Y: C&M 0 3 #10 ;in memory location 0,3 put 10

5 DRAW: LR1 0 0
; load R1 with contents of
memory 00

6 LR2 0 1
; load R2 with contents of
memory 01

7 ADD R1 R2 R3 ;add and put result in R3

8 C&M R3 #1
; put 1 (to light a pixel) in the
address in R3

9 INC X 0 2
; increment x with contents of
memory 02

10 INC y 0 3
; increment y with contents of
memory 03

11 JEQ #R3 199 END

; check if R3=199 (R3 is where
the video memory location was
stored);

12 JMP DRAW ; jump to label 'DRAW'

13 END: END

100

38Friday, 13 February 2009

Gillian Crampton Smith + Philip Tabor Telecomunicazioni

Flowchart X
1 x coord of pixel to draw

Y
2 y coord of pixel to draw

PLUS X
3 amount to increease x

PLUS Y
4 amount to increease y

DRAW
5 x coordinate

6 y coordinate

7 to give memory address

8 to light the pixel

9 for next pixel

10

NO YES

12

Begin

Put 0 in memory location 00

Put 100 in memory location
01

Put 1 in memory location 02

Put 10 in memory location 03

Load R1 with contents of
memory 00

Load R2 with contents of
memory 01

Add R1 and R2
put result in R3

Put 1 in the memory location
stored in R3

Inrease x by contents of
memory labeled x

Inrease y by contents of
memory labeled y

END

R3 = 199?

Jump to label
'DRAW'

39Friday, 13 February 2009

